36 research outputs found

    MeshRouter Primitives: Messages, Interest, and Interpreters

    Get PDF
    The MeshRouter architecture provides a general framework for interest-limited message ex- changes among client processes. There are two general areas in which the MeshRouter im- plementation depends on specics of the associated clients: i) the lowest level inter-processor communications model and ii) the nature/content of exchanged messages and \interest". This note describes the hierarchical object design (C++ sense) used to implement the basic Message and Interest objects of the MeshRouter. Interfaces are dened in terms of abstract base classes, and specific inherited objects appropriate for the RTI-s/JSAF application are presented as concrete examples. The MeshRouter system includes a substantial memory management com- ponent for efficient use of the basic Message objects. This system is summarized and plausible near-term extensions are noted

    The MeshRouter Architecture

    Get PDF
    The Joint Forces Command (JFCOM) Experimentation Directorate (J9)'s recent Joint Urban Operations (JUO) experiments have demonstrated the viability of Forces Modeling and Simulation in a distributed environment. The JSAF application suite, combined with the RTI-s communications system, provides the ability to run distributed simulations with sites located across the United States, from Norfolk, Virginia to Maui, Hawaii. Interest-aware routers are essential for communications in the large, distributed environments, and the current RTI-s framework provides such routers connected in a straightforward tree topology. This approach is successful for small to medium sized simulations, but faces a number of significant limitations for very large simulations over high-latency, wide area networks. In particular, traffic is forced through a single site, drastically increasing distances messages must travel to sites not near the top of the tree. Aggregate bandwidth is limited to the bandwidth of the site hosting the top router, and failures in the upper levels of the router tree can result in widespread communications losses throughout the system. To resolve these issues, this work extends the RTI-s software router infrastructure to accommodate more sophisticated, general router topologies, including both the existing tree framework and a new generalization of the fully connected mesh topologies used in the SF Express ModSAF simulations of 100K fully interacting vehicles. The new software router objects incorporate the scalable features of the SF Express design, while optionally using low-level RTI-s objects to perform actual site-to-site communications. The (substantial) limitations of the original mesh router formalism have been eliminated, allowing fully dynamic operations. The mesh topology capabilities allow aggregate bandwidth and site-to-site latencies to match actual network performance. The heavy resource load at the root node can now be distributed across routers at the participating sites

    Analysis, Tracing, Characterization and Performance Modeling of Select ASCI Applications for BlueGene/L Using Parallel Discrete Event Simulation

    Get PDF
    Caltech's Jet Propulsion Laboratory (JPL) and Center for Advanced Computer Architecture (CACR) are conducting application and simulation analyses of Blue Gene/L[1] in order to establish a range of effectiveness of the architecture in performing important classes of computations and to determine the design sensitivity of the global interconnect network in support of real world ASCI application execution

    Hrothgar IE: A Distributed, Persistent Inquiry Environment for K-12 Learning

    Get PDF
    he concept of a scalable, interactive simulation environment is explored as a substantive application of High-Performance Computing (HPC) technology within K-12 education. An integrated system, combining a scalable simulation engine, information/discourse database components and WWW-based access is proposed as a prototype framework for an inquiry-based learning environment - a progressive approach consistent with the calls for fundamental changes in science education advocated in both the National Science Education Standards and Project 2061. Pursuing the curriculum issue further, it is suggested that this simulation Inquiry Environment could be positioned as a key tool for constructing knowledge-building representations ('artifacts') in the sense advocated in modern, dialogue-focused theories of learning and teaching. Middle school is identified as the ideal testing area for this approach, with a broad, possibly multidisciplinary subject matter for the simulation (e.g., ecology, government, and economics). A number of technical issues related to design choices and implementation strategies for the simulation engine are explored. It is argued that the HPC features within the system design are essential in enabling the overall educational goals. The next steps in the implementation process are discussed, emphasizing the need for a collaboration of computational scientists, educators, and cognitive scientists in the identification of simulation scenarios and associated curriculum elements

    Area Decay Law Implementation for Quark String Fragmentation

    Full text link
    We apply the Area Decay Law (ADL) straightforwardly to simulate a quark string hadronization and compare the results with the explicit analytic calculations. We show that the usual "inclusive" Monte--Carlo simulations do not correspond to the ADL because of two mistakes: not proper simulation of two--dimensional probability density and lack of an important combinatorial factor in a binary tree simulation. We also show how to simulate area decay law "inclusively" avoiding the above--mentioned mistakes.Comment: 5 pages (REVTEX) + 3 figures (available in ps format from G.G.Leptoukh , IPGAS-HE/93-3, to be published in Phys. Rev.

    Hadronic final states in deep-inelastic scattering with Sherpa

    Full text link
    We extend the multi-purpose Monte-Carlo event generator Sherpa to include processes in deeply inelastic lepton-nucleon scattering. Hadronic final states in this kinematical setting are characterised by the presence of multiple kinematical scales, which were up to now accounted for only by specific resummations in individual kinematical regions. Using an extension of the recently introduced method for merging truncated parton showers with higher-order tree-level matrix elements, it is possible to obtain predictions which are reliable in all kinematical limits. Different hadronic final states, defined by jets or individual hadrons, in deep-inelastic scattering are analysed and the corresponding results are compared to HERA data. The various sources of theoretical uncertainties of the approach are discussed and quantified. The extension to deeply inelastic processes provides the opportunity to validate the merging of matrix elements and parton showers in multi-scale kinematics inaccessible in other collider environments. It also allows to use HERA data on hadronic final states in the tuning of hadronisation models.Comment: 32 pages, 22 figure

    Epstein-Barr virus: clinical and epidemiological revisits and genetic basis of oncogenesis

    Get PDF
    Epstein-Barr virus (EBV) is classified as a member in the order herpesvirales, family herpesviridae, subfamily gammaherpesvirinae and the genus lymphocytovirus. The virus is an exclusively human pathogen and thus also termed as human herpesvirus 4 (HHV4). It was the first oncogenic virus recognized and has been incriminated in the causation of tumors of both lymphatic and epithelial nature. It was reported in some previous studies that 95% of the population worldwide are serologically positive to the virus. Clinically, EBV primary infection is almost silent, persisting as a life-long asymptomatic latent infection in B cells although it may be responsible for a transient clinical syndrome called infectious mononucleosis. Following reactivation of the virus from latency due to immunocompromised status, EBV was found to be associated with several tumors. EBV linked to oncogenesis as detected in lymphoid tumors such as Burkitt's lymphoma (BL), Hodgkin's disease (HD), post-transplant lymphoproliferative disorders (PTLD) and T-cell lymphomas (e.g. Peripheral T-cell lymphomas; PTCL and Anaplastic large cell lymphomas; ALCL). It is also linked to epithelial tumors such as nasopharyngeal carcinoma (NPC), gastric carcinomas and oral hairy leukoplakia (OHL). In vitro, EBV many studies have demonstrated its ability to transform B cells into lymphoblastoid cell lines (LCLs). Despite these malignancies showing different clinical and epidemiological patterns when studied, genetic studies have suggested that these EBV- associated transformations were characterized generally by low level of virus gene expression with only the latent virus proteins (LVPs) upregulated in both tumors and LCLs. In this review, we summarize some clinical and epidemiological features of EBV- associated tumors. We also discuss how EBV latent genes may lead to oncogenesis in the different clinical malignancie

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    Studies of jet production rates in e + e − annihilation at E cm =29 GeV

    Full text link
    Production rates of multijet hadronic final states are studied in e + e − annihilation at 29 GeV center of mass energy. QCD shower model calculations with exact first order matrix element weighting at the first gluon vertex are capable of reproducing the observed multijet event rates over a large range of jet pair masses. The method used to reconstruct jets is well suited for directly comparing experimental jet rates with parton rates calculated in perturbative QCD. Evidence for the energy dependene of α s is obtained by comparing the observed production rates of 3-jet events with results of similar studies performed at higher center of mass energies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47886/1/10052_2005_Article_BF01506527.pd
    corecore